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In the part of the course, we will be looking at actions of groups on
various combinatorial objects. We will mostly focus on transitive groups and
will look at primitive and imprimitive actions, before turning our attention to
multiply transitive actions. Our aim is to give a brief overview of this topic
and in particular show that primitive groups are small and rare and that
multiply transitive groups are also rare. These notes are a brief introduction
to the topic - there is much material that couldn’t be covered here for time
reasons. Also, in many examples, assertions (sometimes implicit) are made
about things being groups, or something being an action etc. These are often
flagged, but even if not these should be checked by the reader!

Any good book on undergraduate group theory will be a good place to
look at actions and many will include discussion of transitive, primitive and
imprimitive actions. More specialised, but harder, books are the following.
The second has a more computational flavour.

• Permutation Groups, Dixon and Mortimer, Graduate Texts in Math-
ematics, 163. Springer-Verlag, New York, 1996. xii+346 pp. ISBN:
0-387-94599-7

• Permutation Groups, Cameron, London Mathematical Society Student
Texts, 45. Cambridge University Press, Cambridge, 1999. x+220 pp.
ISBN: 0-521-65302-9; 0-521-65378-9

1 Background

We will begin by briefly recalling some basic definitions which you have seen
before.
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Definition 1.1 A group G is a non-empty set G together with a binary
operation, called multiplication, such that the following axioms hold:

(1) For all g, h ∈ G, their product gh is in G.

(2) There exists an identity 1 ∈ G, such that 1g = g1 = g for all g ∈ G.

(3) For every g ∈ G there exists an inverse g−1 ∈ G such that gg−1 =
g−1g = 1.

(4) The group multiplication is associative. That is, g(hk) = (gh)k, for all
g, h, k ∈ G.

In this course we will focus on finite groups, although much of the theory,
with some alterations, can be extended to infinite groups.

We denote by Sn the symmetric group of all permutations on the set
{1, . . . , n}. The alternating group is denoted An and is the group of all even
permutations, that is, those which are the product of an even number of
transpositions.

Conjugation in a group is denoted by hg := g−1hg. Note that elsewhere
the notation hg may mean ghg−1 instead, but our notation is more normal
in group theory. This is linked to the fact that our actions will be on the
right (as is common in group theory) rather than the left (as might be com-
mon elsewhere, when composing maps for instance). This will become clear
later. . .

Recall that if H ≤ G, then a (right) coset of H is a set Hg = {hg : h ∈
H}. These are all equal or disjoint and partition G. Hence, we have:

Theorem 1.2 (Lagrange’s theorem) Let G be a group and H ≤ G a
subgroup. Then,

|G| = |G : H||H|
where |G : H| is the number of cosets of H in G, called the index of H in G.

We say two elements h and k are conjugate if there exists g ∈ G such
that hg = k. Likewise, two subgroups H,K ≤ G are conjugate if there exists
g ∈ G such that Hg = K. Being conjugate is an equivalence relation.

Definition 1.3 A normal subgroup, written N E G, is a subgroup N ≤ G
such that for all h ∈ N and g ∈ G, hg ∈ N .

When N is a normal subgroup of G, we may form the quotient group
G/N whose elements are cosets of N and multiplication is given by

Ng.Nh = Ngh

We also have maps between groups:
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Definition 1.4 A (group) homomorphism is a well-defined map ϕ : G→ H
between two groups G and H which preserves the multiplicative structure.
In other words,

ϕ(gk) = ϕ(g)ϕ(k)

for all g, k ∈ G.

A bijective homomorphism is called an isomorphism. When there is an
isomorphism between two groups G and H, we say G and H are isomorphic
and we write G ∼= H.

Theorem 1.5 (1st isomorphism theorem) Let G and H be groups and
ϕ : G → H be a homomorphism. Then, N := kerϕ is a normal subgroup of
G and the induced map

ϕ̄ : G/N → Im(ϕ) ≤ H

Ng 7→ ϕ(g)

is an isomorphism between the quotient group G/N and the image Im(ϕ).

2 Group actions

We now come to what will be the main topic of study:

Definition 2.1 Let Ω be a non-empty finite set and G a group. We say that
G acts on Ω if there is a map ϕ : Ω×G→ Ω such that

(1) µ(µ(α, g), h) = µ(α, gh)

(2) µ(α, 1) = α

for all α ∈ Ω and g, h ∈ G. If Ω is finite, then we say the action, or G, has
degree |Ω|.

The above notation with µ is a little clumsy, so instead we will write αg
for µ(α, g). Then our axioms become:

(1) (αg)h = α(gh)

(2) α1 = α

This is called writing our action on the right. We could just have well have
chosen to write our actions on the left, as one usually does with maps, but
it is more common in group theory to use right actions. Note also, that in
many places you will see actions written exponentially, that is, writing αg for
αg – there are notational issues with left and right actions here too.
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Remark 2.2 The axioms here just say that the action respects the multi-
plicative structure in the group. For example, if αg = β, then βg−1 = α.
(Exercise!).

Example 2.3 We already know some examples of group actions:

(1) (Trivial action) Let G be a group and Ω a set. Define µ(α, g) = α for
all α ∈ Ω and g ∈ G. Clearly, every group has the trivial action on
every set, but this is not very enlightening!

(2) Let G = Sn acting on the set Ω = {1, . . . , n} by natural permutation.
e.g. pick 3 ∈ Ω = {1, . . . , 4} and (132) ∈ S4, then 3.(132) = 2.

(3) (Right regular action) Let G be a group and take Ω = G. The right
regular action is given by multiplying α ∈ Ω = G on the right by
an element g ∈ G i.e. µ(α, g) = αg. Since group multiplication is
associative, the first axiom is satisfied and the second is also satisfied
by the identity axiom in the group.

(4) (Coset action) Let G be a group and H ≤ G be a subgroup. We take
Ω to be the set of (right) cosets of H in G, denote by (G : H). That is,
Ω := (G : H) = {Hx : x ∈ G}. Define µ(Hx, g) = Hxg. Again, since
group multiplication is associative, the first axiom is satisfied and the
second is too by the identity axiom. You should also check that it is
well-defined.

(5) (Conjugation action) Let G be a group and Ω := G. Define µ(x, g) = xg

to be conjugation in the group. This is one action that is always writ-
ten exponentially, for obvious reasons. You can also have conjugation
action on a set of subgroups of G.

(6) Let Ω be some object. Then the automorphism group of Ω acts on
Ω. For example, the automorphism group of (non-trivial) vectors in
a vector space V is GL(V ), the automorphism group of a set Ω is
Sym(Ω). The set Ω could also be a graph, design, geometry etc.

Remark 2.4 The last example is one reason why actions are so important.
Whenever you have any object in mathematics, it has an automorphism
group which acts on it. It might be trivial, but more often than not it is
non-trivial and can give important information about the object itself.

Lemma 2.5 Every group G is isomorphic to a permutation group. That is,
there exists an injective group homomorphism ϕ : G→ Sn, for some n ∈ N,
and hence G ∼= Im(ϕ) ≤ Sn.
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Proof. Consider the right regular action of G on itself. Since each g ∈ G is
invertible, g is a bijective map on the set Ω = G. Recalling that Sn is the
set of all all bijections from a set of size n to itself, we see that there is a
natural bijection ϕ from G to Sn, where n = |Ω| = |G|. By the first axiom
for an action, ϕ is a homomorphism. Suppose that g ∈ G was in the kernel
of ϕ, that is, g fixes every point in Ω i.e. αg = α for all α ∈ Ω. However,
Ω = G and the only such element in G is 1. Hence, ϕ is injective. Using the
1st isomorphism theorem, G ∼= Im(ϕ). �

Remark 2.6 The title of this part of the course is permutation groups, so
we might think that only means subgroups of Sn. In fact, the above Lemma
2.5 shows up the ‘only’ in the last sentence. Using actions, all groups can be
considered as subgroups of some symmetric group Sn.

Definition 2.7 The kernel of the action is

{g ∈ G : αg = α for all α ∈ Ω}EG

We say that G acts faithfully if it acts with no non-trivial kernel.
Note that we could extend the proof of the above lemma to cover an

arbitrary action. We would still have a homomorphism ϕ : G → Sn, where
n = |Ω|, but in general the action would have a (non-trivial) kernel. In fact,
such an argument would show that our definition of an action on a set of size
n is equivalent to saying that there exists a group homomorphism into Sn.

If an action of G on Ω does have a kernel K, we may always study G/K
which acts faithfully on Ω. Hence, we will often assume that a permutation
group acts faithfully.

3 Orbits and Stabilisers

Definition 3.1 Let G be a group acting on a set Ω. We define the orbit
containing α to be

αG :={β ∈ Ω : ∃g ∈ G s.t. β = αg}
={αg : g ∈ G}

and the stabiliser of α in G to be

Gα := {g ∈ G : αg = α}

Note that if one is writing the action exponentially, the notation αG is
used instead of αG for an orbit.
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Example 3.2 Let G be a group acting on itself by conjugation. The orbits
are called conjugacy classes in G and the stabiliser of a point x ∈ G is the
centraliser :

CG(x) := {g ∈ G : xg = x}
Similarly, if a group G acts by conjugation on a set of subgroups, the orbits
are conjugate subgroups and the stabiliser of a subgroup H is the normaliser
of H in G:

NG(H) :={g ∈ G : hg ∈ H for all h ∈ H}
={g ∈ G : Hg = H}

Proposition 3.3 Let G be a group acting on a set Ω, g, h ∈ G and α, β ∈ Ω.

(1) The set of all orbits of G on Ω form a partition of Ω.

(2) The stabiliser Gα is a subgroup of G. Moreover, if β = αg, then

Gg
α = Gβ

(3) αg = αh if and only if Gαg = Gαh.

Proof. Clearly α ∈ Ω is in the orbit αG. So it remains to show that orbits
are distinct, or equal. Let γ be a point in two different orbits αG and βG.
Then, there exists g, h ∈ G such that αg = γ and βh = γ. So, αgh−1 = β.
Now,

βG = {βk : k ∈ G}
= {αgh−1k : k ∈ G}
= {αx : x ∈ G}
= αG

as when k runs over G, gh−1k also runs over G and vice versa.
To show Gα is a subgroup, we must show it is closed under multiplication

and has inverses. If g, h ∈ Gα, then by the first axiom for actions

α(gh) = (αg)h = αh = α

So, gh ∈ Gα. Clearly, if αg = α, then αg−1 = α, so g−1 ∈ Gα. Hence, Gα is
a subgroup.

Now, suppose that β = αg, so α = βg−1. Then,

h ∈ Gα ⇐⇒ βg−1h = βg−1 ⇐⇒ βg−1hg = β

So, Gg
α = Gβ.

Finally,

αg = αh ⇐⇒ αgh−1 = α ⇐⇒ gh−1 ∈ Gα ⇐⇒ Gαg = Gαh �
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Definition 3.4 A group G acting on a set Ω is transitive if for all α, β ∈ Ω
there exists g ∈ G such that αg = β. A group which does not act transitively
is called intransitive.

Note that, if you pick an orbit αG of G, G will act transitively on it. So,
we can study the action of an intransitive group G by studying the action
on each of its orbits. Hence, for most of the rest of this course we will
study transitive groups. But first, we will introduce the following important
theorem.

Theorem 3.5 (Orbit-Stabiliser theorem) Let G be a group acting on a
set Ω. Then, for all α ∈ Ω,

|Gα||αG| = |G|

Proof. By Proposition 3.3 (3), the points αg of the orbit αG are in bijection
with the cosets Gαg. So, |αG| = |G : Gα|. Finally, by Lagrange’s theorem,

|Gα||αG| = |Gα||G : Gα| = |G| �

Example 3.6 Recall from Example 3.2, the orbits of the conjugation action
are called conjugacy classes. By the Orbit-stabiliser theorem, the size of each
conjugacy class divides the order of G. From the previous Proposition 3.3,
we also see that CG(H) and NG(H) are both subgroups of G.

Definition 3.7 A transitive action of G on Ω is called regular if Gα = 1 for
all α ∈ Ω. Equivalently, g ∈ G fixes no point in Ω.

Corollary 3.8 Let G act transitively of degree n on a set Ω. Then,

(1) All the stabilisers Gα, for α ∈ Ω, are conjugate.

(2) The index |G : Gα| = n for every α ∈ Ω.

(3) The action is regular if and only if |G| = n.

Proof. Since the action is transitive, by Proposition 3.3 (2), all the Gα are
conjugate. The second two parts follow from the Orbit-Stabiliser theorem
and Lagrange’s theorem. �

Note that, from the first part of the above Corollary, a transitive group
G is regular if there exists α ∈ Ω such that Gα = 1.
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Exercise 3.9 You should convince yourselves that:

(1) The right regular action is transitive and regular!

(2) Coset action is transitive.

Example 3.10 Let V be a n-dimensional vector space over the finite field
Fq. Define projective space in the normal way

Pn−1 = Pn−1(q) = V/ ∼

where ∼ is an equivalence relation given by v ∼ w if and only if there exists
α ∈ Fq such that v = αw. So, the equivalence classes are 1-dimensional
subspaces of V ; we call these points of Pn−1.

Let G = GLn(q), the set of all invertible n×n matrices with entries in Fq.
Now, GLn(q) acts transitively on the set of all non-zero vectors V , so it also
acts transitively on the points (1-dimensional subspaces) of Pn−1. However,
there is now a kernel to this action, given by scalar matrices λ 0

. . .

0 λ

 = λIn

Since this is the kernel of the action (and in fact the centre Z(GL(V ))),
these matrices form a normal subgroup of GLn(q). We define:

PGLn(q) := GLn(q)/〈scalars〉

the projective general linear group. This still acts transitively on the points
of Pn−1 and it has order |PGLn(q)| = qn(n−1)/2(q2 − 1) . . . (qn − 1) We may
also define the projective special linear group to be

PSLn(q) := SLn(q)/〈scalars〉

It has order

|PSLn(q)| = 1

(n, q − 1)
qn(n−1)/2

n∏
i=2

(qi − 1)

where (n, q− 1) = hcf(n, q− 1) is the highest common factor of n and q− 1.
This turns out to be an important family of groups as they are all simple,
i.e. they have no non-trivial normal subgroups, except for when n = 2 and
q = 2, 3.
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Definition 3.11 Let G be a group which has an action on Ω and Ω′. We
say these actions are isomorphic if there exists a bijection ϕ : Ω → Ω′ such
that for all α ∈ Ω, g ∈ G,

ϕ(αg) = ϕ(α)g

In other words, such that the following diagram commutes for all g ∈ G.

Ω

Ω

Ω′

Ω′

g g

ϕ

ϕ

Note that this is the natural definition – it just says that G acts the same
way on Ω as it does on Ω′.

Proposition 3.12 Let G act transitively on a set Ω. Then, there exists a
subgroup H ≤ G such that the action of G on Ω is isomorphic to the coset
action of G on (G : H), the cosets of H in G.

Proof. Pick α ∈ Ω and set H = Gα. Define ϕ : Ω→ (G : Gα) by αg 7→ Gαg.
By Proposition 3.3 (3), this is a bijection. The isomorphism property is also
clear,

ϕ(αg) = Gαg = (Gα1)g = ϕ(α)g. �

Note that the last proposition limits the possible transitive actions a
group G can have. The possible Ω on which G can have a transitive action
must correspond to a subgroup H at index |Ω|. It also tells us that when
we are doing permutation groups and actions, we are really studying group
theory.
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4 Primitive and imprimitive actions

Example 4.1 Consider the symmetries of a square:

1 2

4 3

Recall that the group of symmetries of a square is D8, which contains four
reflections and four rotations. By numbering the vertices, we may consider
that D8 acts on Ω = {1, 2, 3, 4}. It is easy to see that D8 acts transitively on
Ω. However, since D8 must preserve the square, wherever we map 1, 3 must
be opposite. Similarly for 2 and 4.

If instead we consider S4 acting on Ω, this is also transitive, but we may
map 1 wherever we like without 3 having to be opposite. So, these two
transitive actions are fundamentally different.

Definition 4.2 Let G be a group acting transitively on a set Ω. Let B be a
set of subsets B that partition Ω. If

B ∩Bg = ∅ or B

for all g ∈ G, B ∈ B, then we say that B is a system of imprimitivity, or a
system of blocks. The subsets B are called blocks.

Note that, we may always take B to be {Ω}, or {{α} : α ∈ Ω}. These are
known as trivial systems.

A group G is imprimitive if there exists a non-trivial system of imprimi-
tivity; G is primitive if no such system exists.

Example 4.3 The group D8 acting naturally on Ω = {1, 2, 3, 4} is imprim-
itive with blocks {1, 3} and {2, 4}. The group S4 acting on Ω is primitive.
(You should convince yourselves that no non-trivial system of imprimitivity
exists for S4.)

Note that since G is transitive, if B is a system of imprimitivity, then
given any B ∈ B,

B = {Bg : g ∈ G}.

Hence, all the blocks B in B have the same size.
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Definition 4.4 An equivalence relation ∼ is called a G-congruence if it is
preserved under the action of the group. That is,

α ∼ β ⇐⇒ αg ∼ βg

for all g ∈ G.

Lemma 4.5 Let B be a system of imprimitivity for Ω. Then, we may define
a G-congruence by α ∼ β if α and β are in the same block of B.

Conversely, if ∼ is a G-congruence on Ω, then the equivalence classes of
∼ form a system of imprimitivity.

Proof. Exercise. �

This gives us an equivalent definition of primitive and imprimitive groups:

Corollary 4.6 A group G is imprimitive if there exists a non-trivial G-
congruence relation. It is primitive if no non-trivial G-congruence exists.

Lemma 4.7 Suppose G has a transitive action of prime degree n. Then, G
acts primitively.

Proof. Exercise. �

We must now take a short detour to define the semidirect product of
groups. This is a generalisation of direct product of groups.

Let N and H be two groups. Suppose H acts on N in such a way that it
respects the multiplicative structure of N . That is, h ∈ H acts on N as an
automorphism of N . For reasons which will become clear, we will write this
action exponentially: n 7→ nh is an automorphism of N .

We define a group G = {(n, h) : n ∈ N, h ∈ H} with multiplication

(n, h)(m, g) := (nmh−1

, hg)

We call G the semidirect product of N by H.

Exercise 4.8 Check that G is a group. What is the identity element? What
is the inverse of (n, h)?

It is easy to see that N ′ := {(n, 1) : n ∈ N} and H ′ := {(1, h) : h ∈ H}
are subgroups of G which are isomorphic to N and H, respectively. We see
that N ′ ∩H ′ = 1 and N ′H ′ = G. (Note that XY := {xy : x ∈ X, y ∈ Y }.)
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Moreover, N ′ is a normal subgroup of G and conjugation by an element of
H ′ is given by:

(1, h)−1(n, 1)(1, h) = (nh, 1)

So, conjugation of N ′ by H ′ matches exactly the action on N of H. (This is
why we write the action exponentially here – H ′ acts on N ′ by conjugation).
Because of this, we normally drop the dashes and simply write N and H for
N ′ and H ′. Note that this is exactly the same as for direct products. In the
same way, we also simplify the notation for G, writing elements as nh rather
than (n, h) (= (n, 1)(1, h)).

We often write G = N : H, or G = NoH to signify that G is a semidirect
product of N by H. Note that this notation relies implicitly on knowing the
action of H on N .

You may also see the semidirect product defined in a different way:

Definition 4.9 LetG be a group, NEG andH ≤ G. Then, G is a semidirect
product of N by H if

G = NH and N ∩H = 1.

Exercise 4.10 Check that the two definitions are equivalent. Here, the
action of H on N is the conjugation action of the subgroup H on N .

Example 4.11 (1) Let G be the direct product of two groups H and K,
G := H × K. Then, G is the semidirect product of H by K and the
semidirect product of K by H. So, semidirect products are a generali-
sation of direct products.

(2) Let G = D8. Let V4 be the subgroup of D8 given by

V4 = {1, (13), (24), (13)(24)} = C2 × C2

Now V4 is a normal subgroup of D8 (Show this!). Let H ∼= C2 be the
subgroup 〈(12)(34)〉. Then, certainly V4 ∩H = 1. By considering the
product V4H, we see that every element of G can be written this way.
That is, G = V4H. So, D8 is a semidirect product of V4 by C2.

(3) Let G = D8. Let N be the subgroup of D8 of all the rotations of the
square. Let a denote the rotation by 90◦, (1234). Then, N = 〈a〉 = C4

the cyclic group.

N := {1, (1234), (13)(24), (1432)}
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Pick H := 〈(13)〉. Again, we see that N is a normal subgroup, G = NH
and clearly N ∩ H = 1. So, D8 is also a semidirect product of C4 by
C2.

Note that we could also have chosen different subgroups H as long as
they were isomorphic to C2 and not contained in the normal subgroup and
the construction would still have worked.

We now have the machinery to describe some important examples of
primitive and imprimitive groups.

Definition 4.12 (Wreath product) Let N = A× · · · × A︸ ︷︷ ︸
m

be the direct

product of m copies of the group A. Let H be a group which acts on N by
permuting the m copies of A. We define G to be the semidirect product of
N by H. This is called the wreath product of A by H, A is called the base
group and G is written G = A oH, or G = AwrH.

Example 4.13 The group C2 oS3 = (C2×C2×C2) : S3 is a wreath product.
We could construct this directly by taking:

N := 〈(12)〉 × 〈(34)〉 × 〈(56)〉

Then, we need a group H isomorphic to S3 which acts on the 6 points so
as to preserve the multiplicative structure of N (needed for the semidirect
product). It turns out that taking

H := 〈(135)(246), (13)(24)〉

this works (check this!).
Note that G acts on Ω = {1, . . . , 6} with blocks {{1, 2}, {3, 4}, {5, 6}}.

So, G = C2 o C3 acts imprimitively on Ω.

Look back to Example 4.11 (2) to see that D8 can be written as a wreath
product D8 = C2 o C2 and it preserves precisely the system of imprimitivity
that we observed in Example 4.1.

Remark 4.14 In fact, it is not difficult to see that any imprimitive group
can be written as a wreath product. In particular, we may study imprimitive
groups by studying the action of the base group on a block and the action
of the group permuting the blocks. If the system of imprimitivity has blocks
of minimal size, then the action of the base group will be primitive. Hence,
we see that primitive groups are the building blocks of permutation groups.
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Example 4.15 (Affine general linear group) Let Ω be all the vectors
of the vector space V over a field F (including the 0-vector). This set is
preserved by translations as well as by the action of GL(V ). So, elements of
the form

ta,v : u 7→ uA+ v

where A ∈ GL(V ), act on Ω. The group of all such elements is called the
affine general linear group and is denoted AGL(V ), or if V is n-dimensional
over a field F , AGLn(F ) (show this is a group).

Let N := {t1,v : v ∈ V }. This is a normal subgroup of AGL(V )
(check this!). You can also find a subgroup of AGL(V ) which is isomor-
phic to GL(V ), disjoint from N and such that AGL(V ) = N GL(V ). Hence,
AGL(V ) is a semidirect product. Since N has the same size as number of
vectors in the vector space V , it is often written:

AGL(V ) ∼= V : GL(V ) or AGLn(F ) ∼= F n : GLn(F )

It is clear that the action here is transitive, as any vector can be reached by a
translation. It is also true that this action is primitive. You should convince
yourself of this now (!), but in a later section we will have a better way of
showing this.

5 Primitive groups

We will now discuss some results which tell us something about the structure
of primitive groups.

Proposition 5.1 Let G act on a set Ω and N EG. Then,

(1) The orbits of N form a system of blocks for G.

(2) If there exists α ∈ Ω which is fixed by N , then N fixes all of Ω i.e. it
lies in the kernel of the action.

Proof. Let ∆ be an orbit of N on Ω. Then, ∆g is an orbit for the group
N g. Since N is normal, N g = N . However, G is transitive, so the set of
all these orbits covers Ω. Since orbits are disjoint, these form a system of
imprimitivity.

If α is fixed by N , then it is a block of size one. However, every block in
a system of imprimitivity has the same size. �

Note that the system of imprimitivity in part (1) could be trivial (as it is
in part (2)). In particular, this will be the case in the following corollary:
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Corollary 5.2 If G acts primitively on Ω and N E G, then N either acts
transitively on Ω, or it is in the kernel of the action. �

For the following theorem we need a short definition:

Definition 5.3 Let G be a group and H ≤ G a subgroup. Then H is
maximal in G if there does not exists a subgroup K of G such that

H � K � G

We will now prove the following very important theorem about primitive
actions. First we need some notation. If ∆ is a subset of Ω, then let G{∆}
denote the setwise stabiliser of ∆ in G. (Clearly, if α ∈ Ω, Gα = G{α}.)

Theorem 5.4 Let G act transitively on Ω, α ∈ Ω. Then,

G is primitive ⇐⇒ Gα is maximal in G.

Proof. Let α ∈ Ω. Consider all the possible systems of imprimitivity on Ω.
We let Σ be the set of all blocks B in such a system of imprimitivity with
α ∈ B. Let S be the set of all subgroups H of G such that Gα ≤ H. We
will prove the theorem by showing that there is a bijection between these
two sets. Indeed, define Ψ : Σ → S by Ψ(B) = G{B} and Φ : S → Σ by
Φ(H) = αH. We will show that these two maps are bijections and mutually
inverse.

First, consider Ψ. Let g ∈ Gα. Then, α ∈ B ∩ Bg and so, since B is a
block, B = Bg. Hence, g ∈ G{B} and we have Gα ≤ G{B} = Ψ(B). So Ψ
does indeed map Σ into S.

Next, consider Φ. Let B = αH and g ∈ G. Clearly, if g ∈ H, then
Bg = B. We claim that if g 6∈ H, then B ∩ Bg = ∅. Suppose not, then
there exists h, k ∈ H such that αh = αkg ∈ B ∩ Bg. So, kgh−1 ∈ Gα and
by rearranging we get that g ∈ k−1Gαh ⊆ H, a contradiction. Hence, B is a
block in some block system and Φ does map S into Σ. Moreover, the above
argument shows that if B = αH, then B = Bg if and only if g ∈ H. So,
H = G{B}. Therefore, Ψ ◦ Φ(H) = Ψ(αH) = G{αH} = H.

It remains to show that Ψ followed by Φ is the identity. Now, Ψ(B) =
G{B}, so we need just show that G{B} acts transitively on the block B and
then Φ ◦ Ψ(B) = αG{B} = B. However, if g ∈ G such that αg = β for
α, β ∈ B, then β ∈ B ∩Bg. Hence, B = Bg and g ∈ G{B}. �

Remark 5.5 The above theorem tells us that studying primitive actions
of G, we are finding all maximal subgroups of G. This is the first step in
finding the subgroup lattice of a group G. So again, we see that in studying
permutation groups, we are really doing group theory.
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Since we may always factor out the kernel of the action, we may turn
our attention to primitive groups which act faithfully. Then, they may be
considered to be a subgroup of Sym(Ω) and we may interpret elements in
them accordingly.

Theorem 5.6 Let G be a primitive group acting faithfully on Ω.

(1) If G contains a 3-cycle, then G ≥ Alt(Ω).

(2) If G contains a 2-cycle, then G = Sym(Ω).

Proof. (1) Let ∆ ⊆ Ω. We will write Alt(∆) for the subgroup of Alt(Ω)
which fixes Ω − ∆ pointwise and acts as the alternating group on ∆.
Pick ∆ to be the maximal subset of Ω such that G ≥ Alt(∆). Now
G contains a 3-cycle, hence a copy of A3

∼= C3, so such a ∆ certainly
exists. Suppose for a contradiction that ∆ $ Ω.

We claim that there always exists a 3-cycle in G with exactly two points
in ∆. Since G is primitive, ∆ is not a block. So, there exists g ∈ G
such that ∆ ∩∆g is not ∅, or ∆.

Suppose ∆ ∩∆g = {α} is a single point. There are certainly 3-cycles
of the form h := (αβγ) ∈ Alt(∆) ≤ G, where β, γ ∈ ∆. However,
since Alt(∆g) = Alt(∆)g ≤ G, G also contains 3-cycles of the form
k := (αδε) ∈ Alt(∆g), where δ, ε ∈ ∆g. Now,

k−1h−1kh = (αεδ)(αγβ)(αδε)(αβγ)

= (αβδ)

which is a 3-cycle in G with exactly two points in ∆.

Now, suppose that ∆ ∩∆g contains at least two points, say α and β.
Pick δ ∈ ∆g −∆. Then, the 3-cycle (αβδ) ∈ Alt(∆g) ≤ G has exactly
two points in ∆. Hence, there exist 3-cycles in G with exactly two
points in ∆.

Let (αβδ) be such a 3-cycle in G with exactly two points α, β in ∆.
Set Γ = ∆ ∪ {δ}. We claim that G ≥ Alt(Γ). Since G ≥ Alt(∆), it
is enough to show that G contains all elements h ∈ Alt(Γ) such that
δh 6= δ. Since γ := δh ∈ ∆, there exists k ∈ Alt(∆) ≤ G such that
γk = β. Now, hk(αβδ) is certainly in Alt(Γ) and moreover it fixes
δ. Hence, it is in Alt(∆) ≤ G. However, since k and (αβδ) are both
elements of G, h is also in G. Therefore, G ≥ Alt(Γ) contradicting the
maximality of ∆.
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(2) If |Ω| = 2 and G contains a 2-cycle, then G is all of S2 = C2. Hence, we
may assume that |Ω| ≥ 3. Suppose G contains the 2-cycle (αβ). Since
G is primitive, {α, β} is not a block, so again we have g ∈ G such that
{α, β} ∩ {α, β}g is neither ∅, nor {α, β}. Hence, it must be {α} say.
So, {α, β}g = {α, γ} with γ 6= β. Then, (αβ)g−1(αβ)g = (αβ)(αγ) =
(αβγ). So, G contains a 3-cycle. By the first part, G ≥ Alt(Ω).
However, G also contains a 2-cycle, which is an odd permutation, so
G ≥ 〈(αβ), Alt(Ω)〉 = Sym(Ω). �

So, if a primitive group contains just one 2- or 3-cycle, it already is the
whole of Sn, or An, respectively. This suggests that, if other faithful primitive
groups of degree n do exist, they must be much smaller than n!. We will
come back to such thoughts later in Section 7. . .

6 Multiply transitive groups

Definition 6.1 Let G be a group acting on a set Ω. Suppose α1, . . . , αk are
k distinct points of Ω and β1, . . . , βk are a second set of k distinct points of
Ω. Then, G is k-transitive if there exists g ∈ G such that

α1g = β1, . . . , αkg = βk

Clearly, if a group is k-transitive, then it is also (k − 1)-transitive.

Exercise 6.2 (1) Sn is n-transitive.

(2) An is (n− 2)-transitive, provided n ≥ 3.

Lemma 6.3 A group G is k-transitive on Ω if and only if

(1) G is transitive and

(2) Gα is (k − 1)-transitive on Ω− {α}.

Proof. Exercise. �

Lemma 6.4 Let G be a group which acts 2-transitively on Ω. Then G is
primitive.

Proof. Exercise. �
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Note that using the above lemma can be a good way to show that a
group is primitive. For example, it is straightforward to show that AGL(V )
is 2-transitive (Exercise), hence we see that it is also primitive.

We gave two examples of infinite families of multiply transitive groups
above, but how many other groups are multiply transitive? It seems like
quite a strong constraint. . .

Searching for such groups began as far back as the 1860s with Mathieu
and others. The classification of all such groups was only concluded using the
Classification of Finite Simple Groups (CFSG) (this is a huge piece of work
completed in 2008, taking 50+ years and estimated at over 10,000 pages of
proof). The only known proof of the classification of doubly transitive groups
relies on this! However, we can do without this for larger k. We will give you
one such result after we make the following definition.

Definition 6.5 A group G is sharply k-transitive if it is k-transitive and the
pointwise stabiliser of any k distinct points is trivial.

So, a regular group is a sharply 1-transitive group.

Proposition 6.6 (Jordan 1870s) Let G be a sharply 4-transitive group of
degree n. Then, n is 4, 5, 6, or 11.

Proof. Let Ω = {1, 2, 3, 4, . . . , n}. Let t ∈ G be a element which switches
1 and 2 and fixes 3 and 4. Since t2 must fix 1, 2, 3, 4 and G is sharply 4-
transitive, t2 = 1. So, t must have the form

t = (12)(3)(4) . . . (ij) . . . (kl) . . .

Let H be the subgroup of G1 of elements which commute with t.

H := CG1(t) = {g ∈ G : 1g = 1 and tg = gt}

Now, t fixes at least two points (3 and 4) and at most 3 points, since otherwise
t = 1. Let fixΩ(t) denote the set of fixed points and consider the action of H
on fixΩ(t). Let α be such a fixed point of t. Then, αht = αth = αh. So, αh
is a fixed point of t and H permutes fixΩ(t).

We claim that H also acts faithfully. Indeed, suppose h ∈ H fixes every
point in fixΩ(t). However, it also fixes 1 and so 2 as well, hence it fixes
at least 4 points. So, h = 1 and H acts faithfully on fixΩ(t). Therefore,
|H|

∣∣ |Sym(fixΩ(t))|. If n is even, then t must have two fixed points and if n
is odd it must have three. So, if n is even, |H|

∣∣ 2 and if n is odd, |H|
∣∣ 6.

Now let C be the set of transpositions other than (12) in t. We claim
that H acts transitively on C. Pick g ∈ G such that 1g = 1, 2g = 2, ig = k,
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jg = l. Observe that g moves the transposition (ij) ∈ C to (kl). Now, tg

swaps 1 and 2 and swaps k and l. So, tg agrees with t on 1, 2, k and l. Since
G is sharply 4-transitive, tg = t and so g ∈ H. Hence, H acts transitively
on C. Now, the stabiliser of an element of C has order at least 2. Just take
k = j, l = i in the choice of g. Then, g fixes (ij). Since the stabiliser of
an element of C has order at least 2 and |H| ≤ 6, by the Orbit-Stabiliser
theorem, |C| ≤ 3.

If n is odd, then |C| ≤ 3 and n ≤ 2 + 3 + 3.2 = 11. If n is even, |H| ≤ 2
and |C| ≤ 1, so n ≤ 2 + 2 + 1.2 = 6. It remains to eliminate the cases of
n = 7, 9 – this is left as an exercise. �

The groups in question in the above proposition turn out to all be unique.
For n = 4, 5, 6, we have S4, S5 and A6 which are familiar. However, the last
group is called M11 and is new (note that is must be a proper subgroup of
S11). It is a Mathieu group which is named after Mathieu who found it. He
found several other Mathieu groups too. In fact, M12 is a sharply 5-transitive
group of degree 12 with M11 as the stabiliser of a point. The stabiliser of two
points is M10 which is sharply 3-transitive, M9 is sharply 2-transitive etc.
The group M12 is the automorphism group of the Steiner system S(5, 6, 12)
(see next part of the course).

He also discovered another group M24 which is a 5-transitive group of
degree 24. Its point stabiliser M23 is 4-transitive, and M22 is 3-transitive
etc. The automorphism group of the Steiner system S(5, 8, 24) is M24. It
also turns out that M24, M23, M22, M21, M12 and M11 are also all (sporadic)
simple groups (groups with no non-trivial normal subgroups) which makes
them extremely interesting!

Remark 6.7 The point the above proposition is to demonstrate that mul-
tiply transitive groups are rare. In fact,

• The only 5-transitive groups apart from Sn and An are M24 and M12.

• The only 4-transitive groups apart from Sn and An are M23 and M11.

• The 2- and 3-transitive groups are all known. There are some infinite
families as well as some individual groups.

7 Bases for permutation groups

For vector spaces, bases are very important – a linear transformation is com-
pletely determined by its action on a basis. For permutation groups we wish
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to define an analogous concept. This will lead to information about the
possible primitive groups of a given degree.

We begin with a bit of notation: if ∆ ⊆ Ω, then define G(∆) to be the
pointwise stabiliser in G of ∆. (Compare this to G{∆} being the setwise
stabiliser.)

Definition 7.1 A subset Σ ⊆ Ω is a base for G if G(Σ) = 1. That is, if the
only element which fixes Σ pointwise is the identity.

It is clear that every group G which acts faithfully has a base.
Define supp(g) to be the set of points of Ω which are moved by g; this is

called the support of g.

Lemma 7.2 Let G be a group acting on a set Ω and Σ ⊆ Ω. The following
are all equivalent:

(1) Σ is a base for G.

(2) Σg is a base for G, for all g ∈ G.

(3) For all g, h ∈ G, if αg = αh for all α ∈ Σ, then g = h.

(4) Σ ∩ supp(g) 6= ∅, for all 1 6= g ∈ G.

Proof. Exercise. �

Note that if Σ is a base for G, then any set containing Σ is also a base for
G. Hence, we are interested in finding bases with the smallest possible size.

Example 7.3 Let G = Sn. Using the fourth part of the above lemma, we
see that a base for Sn must have size at least n− 1.

Exercise 7.4 Show that the smallest base for AGLn(F ) has size n+ 1.

Lemma 7.5 Let G be a faithful permutation group of degree n whose smallest
base has size b. Then,

2b ≤ |G| ≤ n(n− 1) . . . (n− b+ 1) ≤ nb

Proof. We may assume that G ≤ Sn and the base is {e1, . . . , eb}. By La-
grange’s theorem, we have

|G| = |G : Ge1||Ge1 : G(e1,e2)| . . . |G(e1,...,eb−1) : G(e1,...,eb)||G(e1,...,eb)|
= |G : Ge1||Ge1 : G(e1,e2)| . . . |G(e1,...,eb−1) : G(e1,...,eb)|

We consider |G(e1,...,ek) : G(e1,...,ek+1)| for each k = 0, . . . b − 1. By the Orbit-
Stabiliser theorem, we have that this is less than n − k. However, since
the base smallest possible size, G(e1,...,ek+1) � G(e1,...,ek). So, |G(e1,...,ek) :
G(e1,...,ek,ek+1)| is also greater than 2 and the lemma is proved. �
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We have already seen that An and Sn are both primitive groups in general.
We asked earlier about what we can say about other (faithful) primitive
groups of degree n. We make a definition:

Definition 7.6 A proper primitive group is a faithful primitive group of
degree n which is not An, or Sn.

Theorem 7.7 (Bochert 1889) Let G ≤ Sym(Ω) be a proper primitive
group of degree n. Then, G has a base of size at most n/2.

Proof. Let Σ ⊆ Ω be a base for G of minimal size and suppose for a con-
tradiction that |Σ| > n/2. By minimality, ∆ := Ω − Σ is not a base. So,
there exists 1 6= g ∈ G such that its support is disjoint from ∆. That is,
supp(g) ⊆ Σ. Pick α ∈ supp(g). By minimality, Σ − {α} is also not a base
for G, so there exists 1 6= h ∈ G whose support is disjoint from Σ − {α}.
However, since Σ is a base, supp(h) ∩ Σ 6= ∅, so α ∈ supp(h). Hence,

supp(g) ∩ supp(h) = {α}

Let β = αg and γ = αh. Then,

[g, h] = g−1h−1gh = (αγβ)

is a 3-cycle contained in G (check this). However, by Theorem 5.6, G ≥
Alt(Ω), a contradiction. �

Corollary 7.8 A proper primitive group G ≤ Sym(Ω) of degree n has order

|G| ≤ n(n− 1) . . . (n− bn/2c+ 1)

and index
|Sym(Ω) : G| ≥ (n− bn/2c)!

Proof. We use Lemma 7.5 and Theorem 7.7. �

For example, let B(n) be the bound given by the above Corollary 7.8
and let M(n) be the order of the largest (faithful) proper primitive group of
degree n. We compare the two in Table 1. We have also added the size of
the symmetric group for comparison.

We do have better bounds than the one given by Bochert, however the one
given is still quite useful. Finding a good bound, often for specific families
of groups, is still an active area of research.
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n 5 6 7 8 9 10 11 12
M(n) 20 120 168 1,344 1,512 1,440 7,920 95,040
B(n) 20 120 210 1,680 3,024 30,240 55,440 665,280
|Sn| 120 720 5,040 4,032 362,880 3,268,800 39,916,800 479,001,600

Table 1: Bochert’s bound for primitive groups

Remark 7.9 As is suggested by Table 1, primitive groups are small. To
give another example, consider S16. It has an intransitive subgroup of index
16. The largest imprimitive subgroup has index 6,435 (order 3,251,404,800)
whereas the largest proper primitive subgroup has index 64,864,800 (order
322,560). Can you construct these groups?

We have also given some results which restrict the structure of a primitive
group – there are plenty more! These mean that the structure is quite re-
stricted and so proper primitive groups are rare as is demonstrated in Table
2.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
P (n) 0 0 3 2 5 5 9 7 6 4 7 2 4 20 8 2 6 2

Table 2: Number of proper primitive groups of degree n

In fact, there are infinitely many n for which there are no proper primitive
groups; that is, the only primitive groups are An and Sn.

Remark 7.10 Since the beginning of group theory and permutation groups,
people have been trying to list the primitive permutation groups. Even for
quite small n, say n ≤ 20 this is a hard task to do by hand! Not much
progress was made until the advent of computer algebra packages in the 60s.
The O’Nan-Scott theorem was proved in 1979, which classified the possible
maximal subgroups of Sn. However, it was Cameron in 1981 who realised
that, using the CFSG, this could be applied to greatly restrict the structure
of primitive permutation groups and split them into half a dozen different
classes. These fall roughly into two types, affine and non-affine. This allowed
much more efficient computation of the primitive permutation groups.

• 1871, Jordan, n ≤ 17 with omissions in n = 9, 12, 15, 16, 17

• 1874, Jordan, n = 19

• 1893, Cole, n = 9

• 1895-1900, Miller, corrected n = 12, . . . , 17
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• 1912, Martin (1901) and Bennett (1912), n ≤ 20

• 1960s, Sims, n ≤ 50, lists passed around the mathematical community
and formed one of the earliest databases in computational group theory

• 1988, Dixon & Mortimer, n < 1000 non-affine, using the O’Nan-Scott
theorem

• 1991, Short, n < 256 soluble affine

• 2003, Eick & Höfling, n < 6561 soluble affine

• 2003, Roney-Dougal & Unger, n < 1, 000 affine

• 2005, Roney-Dougal, all n < 2, 500

• 2009, Coutts, Quick & Roney-Dougal, all n < 4, 096
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